Upper Bounds on the Number of Solutions
of Binary Integer Programs

Siddhartha Jain, Serdar Kadiogliieinolf Sellmanri

Brown University, Department of Computer Science
115 Waterman Street, P.O. Box 1910, Providence, Rl 02912
sj 10, serdark, sel |l o@s. brown. edu

Abstract. We present a new method to compute upper bounds of the number of
solutions of binary integer programming (BIP) problems. Given a ®tcreate

a dynamic programming (DP) table for a redundant knapsack cartstraich is
obtained by surrogate relaxation. We then consider a Lagrangiantietagthe
original problem to obtain an initial weight bound on the knapsack. Thisithou

is then refined through subgradient optimization. The latter providesetyaf
Lagrange multipliers which allow us to filter infeasible edges in the DP table. The
number of paths in the final table then provides an upper bound on thkemum

of solutions. Numerical results show the effectiveness of our coufréingework

on automatic recording and market split problems.

Keywords: solution counting, CP-based Lagrangian relaxation, surrogate relax-
ation, dynamic programming

1 Introduction

Solution counting has become a new and exciting topic in d¢oatbrial research.
Counting solutions of combinatorial problem instancelsvant for example for new
branching methods [23, 24]. It is also relevant to give usedback in interactive set-
tings such as configuration systems. Moreover, it plays @n ewre important role
in post-optimization analysis to give the user of an optatiom system an idea how
many solutions there are within a certain percentage ofptienal objective value. The
famous mathematical programming tool Cplex for example mmiudes a solution
counting method. Finally, from a research perspective thblpm is interesting in its
own right as it constitutes a natural extension of the metirapation task.

Solution counting is probably best studied in the satigdac{SAT) community
where a number of approaches have been developed to estimeatember of solu-
tions of under-constrained instances. First attempts tmtcthe number of solutions
often simply consisted in extending the run of a solutionifigdsystematic search after
a first solution has been found [3]. More sophisticated ramded methods estimate
upper and lower bounds with high probability. In [8], e.@.aitrial an increasing num-
ber of random XOR constraints are added to the problem. Therignd lower bounds

* This work was supported by the National Science Foundation throughattez=C Cornflower
Project (award number 0644113).

on the number of solutions depends on how many XORs can belduidere the in-
stance becomes infeasible, whereby the probability thebthund is correct depends
on the number of trials where (at least or at most) the samebauwf XORs can be
added before the instance changes its feasibility status.

An interesting trend in constraint programming (CP) is toneste solution den-
sity via solution counting for individual constraints [23}]. Since the solution density
information is used for branching, it is important that thesethods run very fast. Con-
sequently, they are constraint-based and often give estinoa the number of solutions
rather than hard upper and lower bounds or bounds that hatdhigih probability.

In mathematical programming, finally, the IBM Cplex IP sabat counter [5, 10]
enumerates all solutions while aiming at finding diverseo$eslutions, and the Scip
solution counter finds the number of all feasible solutiosiag a technique to collect
several solutions at once [1]. Stopped prematurely at soeseed! time-limit, these
solvers provide lower bounds on the number of solutions.

Considering the literature, we find that a big emphasis has ks&d on the compu-
tation of lower bounds on the number of solutions of a givasbfem instance. Apart
from the work in [8] and the upper bounding routine for SAT 11], we are not aware
of any other approaches that provide hard or high probghifiper bounds on the num-
ber of solutions. Especially solution counters that arégfahe IBM Cplex and the Scip
solver would benefit if an upper bound on the number of sahsticould be provided
alongside the lower bound in case that counting needs tmpeatl prematurely.

With this study we attempt to make a first step to close this faparticular, we
consider binary integer programs and propose a generalochdtin computing hard
upper bounds on the number of feasible solutions. Our appr@abased on the ex-
ploitation of relaxations, in particular surrogate and taagian relaxations. Experi-
mental results on automatic recording and market splitlprob provide a first proof
of concept.

2 Upper Bounds on the Number of Solutions for Binary Integer
Programs

We assume that the problem instance is given in the format

(BIP) pTx > B
Ax <b
x; € {07 1}

Wlog, we assume that the profit coefficients are integers.ofisth we could mul-
tiply the first inequality with minus one, we make it stand aatthe original objective
of the binary integer program (BIP) that was to be maximizdslally, in branch and
bound approaches, we consider relaxations to compute bpperds on that objective.
For example, we may solve the linear program (LP)

Maximize L =pla
Az <b

and check whethet > B for an incumbent integer solution with valdgto prune the
search.

For our task of computing upper bounds on the number of swistirelaxing the
problem is the first thing that comes to mind. However, steshdd relaxations are
not likely to be all that helpful for this task. Assume thaéth are two (potentially
fractional) solutions that have an objective value greaterqualB. Then, there exist
infinitely many fractional solutions that have the same prop

Consequently, we need to look for a relaxation which pressetive discrete charac-
ter of the original problem. We propose to use the surrogdsation for this purpose.
In the surrogate relaxation, we choose multipliars> 0 for each linear inequality
constraint and then aggregate all constraints into one. We obtain:

Mazimize S=p’x
AT Az < \Tb
x; € {O, 1}.

This problem is well known, it is a knapsack problem (that mhaye negative weights
and/or profits). Let us set — wy «— AT\ andC — C, — ATb. Then, we insert the
profit thresholdB back into the formulation. This is sound &ds a relaxation of the
original problem. We obtain a knapsack constraint

(KP) plz>B
wle < C
x; € {0,1}.

2.1 Filtering Knapsack Constraints

In [12], knapsack constraints were studied in great detallexact pseudo-polynomial
time filtering algorithms were developed which are based dygreamic programming
formulation of knapsack. First, the knapsack instance idifieal so that all profite;
are non-negative. This can be achieved by potentially cépdea binary variable:; (in
the context of knapsack we often refer to the indeas anitem) with its 'negation’
z, = 1 — z;. Then, in a cellM, ; we store the minimum knapsack weight needed to
achieve exactly profiz when only items{1,...,k} can be included in the knapsack
(i.e., when all variables ifxzy1,...,n} are set to 0). Then, the following recursion
equation holds:

My = min{M(Lk_l, My _p, k-1 + wk}. (1)

To filter the constraint we interpret the DP as a weightedctie acyclic graph
(DAG) where the cells are the nodes and nodes that appeae isathe recursion are
connected (see left graph in Figure 1). In particular, wenaghi = (V, E, v) by setting

- V]\,{ = {Mq’k | 0 S k S n}

-V=Vyu {t}

- FEy = {(Mq,k—17Mq,k:) | k>1, M,y € VM}.

— By o= {(My—py -1, M) | k> 1, ¢ > p, Mgk € Var}.
- Fy = {(Mq_’n,t) | q> B, qu € VM}.

- F .= E()UElUEt.

items items

profits 0 1 2 3 4 profits 0 1 2 3 4
o[&-—-f-o-|- o --f--- o---}---0 0| e&--f--o--f-- Q--f--- o---}---0
10 N\ . ~L 10 \ B . -
20 1 o 20 . e
30 o |0 30 . O---}---0
40 \ O --f---0-3}--0 40 N\ o --f---0->3--0
50 \”’ O~ ’Oj:: -0 50 \”’ O« ’”O:: ;-0
60 . _f.o 60 N O
70 < 0---}-"0o 70 . O--[-—0
80 Q--*}:--0 80 Q- fe-0
90 LN ~—T—e__ 90 - «~———e_
100 oo 100 \Ox:\ t
110 O 110 . Se——
120 —1T—eo— . 120 O--f--—-0--1 .~
130 S 130 -
140 o 140 o~
3 3 4 5 0 arc-weight R 3 3 2 0 arc-weight:

Fig. 1. The figure shows dynamic programming tables for a knapsack comstrigh four vari-
ables, profitp” = (50, 40, 30, 20), and profit constraint threshol® = 82. In the left figure
the weights arev™ = (3,3,4,5), and the knapsack’s capacity@ = 10. In the right figure
the weights arav” = (13/5,5/3,3,2), and the capacity i€’ = 19/3. The node-labels are
defined by their row and column number, the sink neds marked separately. The value of
non-horizontal arcs that cross a vertical line is given under that limézdntal arcs have weight
0. Hollow nodes and dashed arcs mark those nodes and arcs thatremeeceby the filtering
algorithm, because there exists no path frdfgo to ¢ with weight lower or equal’ that visits
them.

—v(e):=0foralle € Ey U E;.
- U(Mq,pk,kfl, Mq’k) := wy, for all (Mq,pk_’kfl, Mqﬁk) € FE.

We consider the DAGS because there is a one-to-one correspondence between
paths from}, o to ¢ and variable instantiations that yield a profit greater tBaiore-
over, the length of such a path is exactly the weight of theesponding instantiation.
Therefore, every path fromi, o (thesourcg to ¢ (thesink) with length lower or equal
C defines a feasible, improving solution (we call such pattisissiblg. Vice versa,
every feasible, improving solution also defines an admisgihth from source to sink
with length lower or equal’.

The filtering algorithm in [12] removes edges fraghthat cannot be part of any
admissible path. This is done using a filtering routine foordr path constraints on
DAGs from [13]: We first compute the shortest path distancemfthe source to all
nodes using the topological ordering of the DAG, thus beibig 40 handle shortest
path problems even non-negative edge weights in time limetire size of the graph.
In an analogous second pass which begins at the sink we certiitshortest path
distances to the sink. Equipped with both distances for eade, we can compute the
shortest path lengths from source to sink through each edipeigraph — and remove
all edges and nodes which cannot lie on any admissible path.

2.2 Upper Bounds on the Number of Solutions

In [12], the resulting DP is analyzed using a technique fr@f R1] to identify which
variables cannot take value 0 or value 1. We do not perfors st step. Instead,
we use the resulting DP to count the number of paths from sotarsink using the
technique in [23, 24]. Note that any solution to (BIP) fuffithe redundant constraint

(KP) and therefore corresponds to an admissible path in BuMdreover, two different
solutions also define two different paths in the DP. Thersftte number of paths in
the DP gives an upper bound on the number of solutions in (BIP)

Now, the quality of the upper bound will depend on the choicthe initial vector
A. In ordinary optimization, we aim for a choice &ffor which the surrogate relaxation
gives the tightest relaxation value. However, for the pagof filtering we know that
sub-optimal multipliers\ can provide better filtering effectiveness [14]. Consider t
following example:

(EX) 5021 + 4025 + 3023 + 202, > 82
3$1+(E2+3.’£3 < 5
209 + 23+ 524 <5
x; € {07 1}.

If we useA = (1,1)7, e.g., then we get the knapsack constraint as shown in the
left graph of Figure 1 with a relaxation value of 120 (as thathe highest profit
visited by the remaining admissible paths). On the othedhhad we chosen =
(13/15,6/15)T, we would have obtained the knapsack constraint in the goph of
Figure 1 with an improved upper bound of 110.

Comparing the two DPs, we find that the two choices Xoyield incomparable
filtering effectiveness. Although the second set of mukig gives a strictly better up-
per bound, it cannot remove the edgdyg 3, M110,4). On the other hand, the second
choice for) allows us to remove the edgé&lqg 2, M120,3) and(Misg, 3, M120.4). This
effect has been studied before in [14]. The explanationHerdifferent filtering be-
havior is that, in principle, each edge has its own vegtthat maximally challenges
admissibility (as measured by the shortest path lengthugiiréhat edge).

In principle, we could employ a probing procedure. For eatiee we remove all
edges on the same level, thus enforcing that each path franees¢o sink must pass
through this edge. Then, we start with some selectiom\fand compute the shortest
path length according to the corresponding weighfsas well as the corresponding
BIP solutionz . If w{m > (), then we can remove the edge. Otherwise, we modify
A to minimizeC, — wl'z, as much as possible. From the theory of Lagrangian relax-
ation (see for example [2]) we know that finding the optimabick for A consists in
minimizing a piecewise linear convex function. Conseglyente can use a subgradient
search algorithm to find the vectar> 0 which will minimize C), — waA as much
as possible and thus enable us to decide whethenaxists that would allow us to
remove the edge under consideration.

The problem with this procedure is of course that it takes temymuch time to
probe each individual edge. Instead, we follow the same odetts in CP-based La-
grangian relaxation [15]. That is, we employ a subgradieatch to find a vectox that
minimizesC — wiz, in the DP. Then, for each that the subgradient search consid-
ers, we use our edge-filtering algorithms to remove edges fre graph. That way,
we hope to visit a range of different settings fothat will hopefully remove a large
percentage of edges in the DP that can be discarded.

Consider again our example (EX) from before. If we first praihe graph with
respect to the weight vectas from the left graph in Figure 1 and then, in the pruned

graph, remove edges based on the weight vectoom the right graph in Figure 1, then
we end up with only one path which corresponds to the onlytewsiuo (EX) which is
r=(1,1,0,0)T.

2.3 The Algorithm

Algorithm 1 BIP Counting Algorithm

1: Negate binary variables with profit < 0.
2: Set up the grapty for {z € {0,1}" | p”z > B}.
3: Initialize A.
4: while subgradient method not convergeal
5. Setw «— A\TA,C «— \Tb.
6: Propagatev” z < C'in G removing inadmissible edges.
7: Compute the solutiom that corresponds to the shortest path from source to sif® jmw).
8: Update) according to the current ga@ — w” = and the subgradientz — b.
9: end while
10: Count the number of paths from source to sink in G and return timabeu

The complete procedure is sketched in Algorithm 1. Note hafivgt increase the
number of solutions by considering the cardinality of thefde— {z € {0,1}" | pTz >
B} instead ofP « {x € {0,1}" | pTx > B & Az < b}. Then, to reduce the number
of solutions again, we heuristically remove edges from tRetlat has exactly one path
for eachr € R by propagating constraints” Az < A\T'b for various choices of in the
DP. The resulting number of paths in the DP gives a hard uppandbon the number
of solutions to the original BIP.

2.4 Strengthening the Bound — Cutting Planes, Tree Search,dnpatibility
Labels, and Generate and Check

A nice property of our approach is that we can use all the usethods for strength-
ening linear continuous relaxations, such as preproogssid especially adding valid
inequalities, so-called cutting planes, to the BIP whight&n the continuous relax-
ation.

To strengthen the upper bound on the solution count furtkercan embed our
procedure in a branch-and-bound tree search algorithmhawédruncate at some given
depth-limit. The sum of all solutions at all leafs of the tcated tree then gives an upper
bound on the number of solutions.

For very hard combinatorial counting problems we may carsitbing even more.
In our outline above, we use the profit constraint to defingthphG. In principle, we
could use any vectqr of natural numbers and consider the constrgifit— p? A)x >
B — uTb to set up the DP. This is needed in particular when there isesigdated
objective function. We notice, however, that we do not neekstrict us to using just
one DP. Instead, we can set up multiple DPs for differentad®of.

The simplest way to strengthen the upper bound on the nunfibehutions is to take
the minimum count over all DPs. However, we can do much b#iter that. Following

an idea presented in [9], we can compute compatibility klbetween the different
DPs: Let us denote witly 4 and G the graphs that correspond to two different DPs
for our problem. Our filtering algorithm ensures that eaceeith the graph is visited
by at least one admissible path. The compatibility labedsnff9] aim to ensure that
an edge inG 4 is also supported by a (not necessarily admissible) pathign More
precisely, for each edge {d 4 we ensure that there is a path from source to sink jin
that visits the edge and which corresponds to a solutiontwdiligo defines a path from
source to sink irG' g.

Finally, if we have found an upper bound on the solution cdbat is rather small,
we can generate all potential solutions which is very eaggrgour DAGG. Then, we
test each assignment for feasibility and thus provide aoteaunt.

3 Numerical Results

3.1 Automatic Recording

We first consider the automatic recording problem (ARP) wexd introduced in [15].

3.2 Problem Formulation

The technology of digital television offers to hide metdedia the content stream. For
example, an electronic program guide with broadcastinggiand program annotation
can be transmitted. An intelligent video recorder like tHga*™ system [19] can ex-

ploit this information and automatically record TV contéimat matches the profile of
the system’s user. Given a profit value for each program wighpredefined planning
horizon, the system has to make the choice which prograntisxehecorded, whereby
two restrictions have to be met:

— The disk capacity of the recorder must not be exceeded.
— Only one program can be recorded at a time.

While the problem originally emerged from automatic videoorgling, it has other
applications, for example in satellite scheduling. Vasialgorithms for the ARP have
been studied in [15, 14, 16, 17]. The problem can be statedbemey integer program:

Mazimize pTx
wle < K
ri+x; <1 VOS’LS]STL,LQIJ#Q) (ARP 1)
x €{0,1}"

wherep,; andw; represent the profit and the storage requirement of progréfris the
storage capacity, anfl := [startTime(i), endTime(i)] corresponds to the broadcast-
ing interval of program. The objective function maximizes the user satisfactioilevh
the first constraint enforces the storage restrictionss@aimts of the fornx; +z; <1
ensure that at most one program is recorded at each pointén ti

This formulation can be tightened by considering the candlieph and adding the
corresponding clique constraints to the formulation [15].

Definition 1. The setC' C V is called a conflict clique iff; N I; # 0V i,j € C. A
conflict cliqueC is called maximal iffv D C V, D conflict clique:C C D = C = D.
LetM := {Cy,...,Cn_1} C 2V the set of maximal conflict cliques.

These clique constraints are obviously valid inequalgiese, ifz; +2; < 1 forall
overlapping intervals, it is also true th@iecp x; <1V 0 < p < m.We can therefore
add the clique constraints to our original formulation.

Mazimize pTx

wle <K

zi+x; <1 VO<i<j<nLinI;#0 (ARP 2)
Ziecpxigl YO<p<m

x € {0,1}"

Though being NP-complete on general graphs, finding maxttiaues on the
graph defined by our application is simple:

Definition 2. A graphG = (V, E) is called an interval graph if there exist intervals
I,...,Iiy) C RsuchthatVv;,v; € V: (vi,v;) € E <= L;NI; #0.

On interval graphs, the computation of maximal cliques @pédyformed irO(n logn) [7].
Hence, ARP 2 can be obtained in polynomial time.

3.3 Solution Counting for the ARP
We will now describe how we apply our counting algorithm te thRP problem.

Initialization: The graphG for our ARP formulation is set up using the equation
wTz < K, wherew; represents the storage requirement of progiaand K is the
storage capacity.

Tree Search, and Generate and Test:To strengthen the quality of our bounds on
the number of solutions, we employ a truncated tree searclessyibed earlier. For
branching, we select the variable with the highest knapséfatiencyyp; /w; which is
also selected in the shortest path in the DP according tornhérfiultipliersA. When

we get total solution counts below 100 we generate all smigtand test them for fea-
sibility.

Subgradient Optimization: At every choice point, we conduct the subgradient search
using the object bundle optimization package from Fraridi®h On top of filtering
with respect to the vectors that the subgradient optimizer visits, we also propagate
the constraintv”z < K in the DP at every choice point. At leaf nodes, also choose
randomly 3% of the original constraints in ARP 1 or ARP 2 andpaigate them to
prune the DPs one last time before counting the number ofgedm source to sink.

3.4 Experimental Results

We used a benchmark set described in [15, 14] which can dadabb at [18]. This
benchmark set consists of randomly generated instance$ané designed to mimic
features of real-world instances for the automatic recaydif TV content. For our

ARP-1 ARP-2 ARP-1 ARP-2
Inst/|Gag| Count [Time|| Count [Time| |[Inst]Gap| Count [Time| Count [Time]
0 ||0% 2 20 2 3.2 0 ||0% 39 1109 39 34
1 ||0% 3 10 1 1.5 1 ||0% 203 933 35 20
2 ||0% 1 16 1 2.8 2 ||0% 15 1146 15 22
0 ||1%]|2.27E+10 90 ||1.60E+1038.8 0 ||1%]||6.54E+432636/|7.95E+3% 353
1 ||1%]||3.26E+05% 12 ||2.09E+0% 3.2 1 ||1%]|7.82E+101100(3.75E+10 73
2 ||1%]||8.36E+07 33 ||3.69E+07 9.5 2 ||1%]||5.25E+23 314 || 1.05+23| 294
0 ||2%]||7.51E+12 133||8.77E+1173.8 0 ||2%]||4.75E+595169|6.81E+52 992
1 ||2%](|9.06E+0% 13 ||4.56E+0% 4.3 1 ||2%]|2.57E+133639|8.06E+12 221
2 || 2%]||2.87E+09 68 ||1.33E+09 24 2 || 2%]||1.33E+266873|3.08E+24 893

Table 1. Numerical Results for the ARP Problem. We present the upper boutieearumber of
solutions and the CPU-time in seconds for the binary constraint modé*{BRnd the maximal
cliqgue model (ARP-2). The table on the left is for the small sized data2€e¥720) with 20
channels and 720 minute time horizon, and the table on the right is for tredamgd data set
(50-1440) with 50 channels and 1440 minute time horizon. In this expatjme do not generate
and check solutions for feasibility.

experiments, we use the class usefulness (CU) instancesoki¢éder a small sized
data set which spans half a day (720 minutes) and consis® dfi@nnels, and a large
sized data set which spans a full day (1440 minutes) andstsredi50 channels. Profits
for each program are chosen based on the class that a progtangé to. This class
also determines the parameters according to which itsheisgandomly chosen. On
average, these instances have 300 and 1500 programs,tiesgedll experiments
in this paper were performed on a machine with Intel Core 2d3Q&600, 2.4GHz
CPUs and 2GByte of RAM operating Linux Debian 5.0.3 32-bit. &l experiments,
we enforced a time limit of 3 hours CPU time.

Our first evaluation compares the effectiveness of the nsadiescribed by ARP 1
and ARP 2 in terms of the upper bound on the solution counttiest provide and the
time they take. Specifically, we are interested in the ingees the number of solutions
as we move away from the optimal value. To this end, we inttedheGap parameter
which indicates the percentage gap between a thresholdarmptimal value. We only
consider solutions that achieve an objective value abowe¢hireshold. We experiment
with objective gaps of 0%, 1% and 2% and truncate the seaddpdh 5. Table 1 shows
that the ARP 2 formulation which includes the clique cutsvjites much better upper
bounds than ARP 1 in substantially less time. This indicdtasexploiting the common
methods for strengthening LP relaxations can also be drpl@iffectively to compute
superior upper bounds on the number of solutions of BIPs fadtehat ARP 2 actually
runs faster can be attributed to the fact that the cuttinggdallow much better edge-
filtering effectiveness. Therefore, the DP contains muebefeedges higher up in the
tree, which leads to much faster times per choice point.

We next compare our approach (UBound) with the Cplex IP swiuwtounter which
enumerates all solutions [10, 5] and the Scip solution cauwhich collects several
solutions at a time. Note that Cplex and Scip provide onlyeelobound in case they
time out or reach the memory limit. We again consider objeagiaps 0%, 1% and 2%.

Cplex Scip Ubound Cplex Scip Ubound
Inst. Couanime Couanime Couanime Inst. Couanime Couanime Count‘Time
0 2 (0.17| 2 0.3 2 |3.16 0 39 (182 39 (1.91|f 39 (34.3
1 1 (0.03] 1 |0.05] 1 |1.53 1 35 T 35 | 100 35 [20.7
2 1 |0.08|| 1 1 |2.75 2 14 |0.98|| 14 |1.54||14(15)30.5
3 1 |0.04| 1 |0.03| 1 |1.71 3 6 (0.64|] 6 |0.25 6 30.2
4 1 [0.06] 1 |0.06] 1 |2.46 4 20 |2.52|| 20 |0.51|| 20 [30.8
5 12 |10.62|| 12 |0.16|| 12 |3.83 5 1 |0.34|| 1 0.4 1 20.9
6 6 (0.17|| 6 6 |2.47 6 33 [3.95|| 33 | 71 ||33(39)/27.5
7 1 (007 1 |0.03]] 1 |1.60 7 1 (049 1 |0.31 1 58.0
8 1 [0.09] 1 |0.06] 1 |2.45 8 4 12.16|| 4 [1.95 4 69.6
9 3 (0.37|| 3 |0.04] 3 |2.30 9 6 |(27.1]] 6 |1.81 6 43.8

Table 2. Numerical Results for the ARP Problem with 0% objective gap. We preékenipper
bound on the number of solutions and the CPU-time in seconds at deplie 5afile on the left
is for the small sized data set (20-720) with 20 channels and 720 minuténtirieon, and the
table on the right is for the large sized data set (50-1440) with 50 chaanel$440 minute time
horizon. 'T" means that the time limit has been reached. The numberddrshow exact counts
and the numbers in parenthesis are our upper bounds before watgesed check solutions for
feasibility.

For 0% gap, we run our method with depth 5 which is adequatehceee the exact
counts. For higher gaps, we present the results for deptt®, and 15.

Our results are presented in Table 2, Table 3, and Table 4hEaptimal objective
threshold, UBound provides exact counts for all test ingtanin terms of running time,
UBound does not perform as quickly as the IBM Cplex and the Solution counter.
There is only one notable exception to this rule, instanc&440-1. On this instance,
Scip takes 100 seconds and Cplex times out after three hdils eur method could
have provided the 35 solutions to the problem in 20 seconds.

This discrepancy becomes more evident when we are intdrastée number of
solutions that are with 1% or 2% of the optimum. As we can semfifable 3 and
Table 4 the number of solutions increases very rapidly evenhiose small objective
gaps. Not surprisingly, the counts obtained by Cplex and &a limited by the number
of solutions they can enumerate within the memory and the tionstraints, yielding
a count of roughly 1E+5 to 1E+7 solutions in most cases. Duthéoexplosion in
the number of solutions, Cplex and Scip are never able to gaet counts for the
large instances but only give a lower bound. Cplex hits theetcutoff in 17 out of
20 large instances and reaches the memory limit for the réntaB, and Scip times
out in all large instances. In most cases where Cplex or Seilale to find the exact
counts, UBound is able to provide tight upper bounds thahatenore than an order
of magnitude bigger. In Figure 2, we show how the upper aneidvounds obtained
by UBound, Cplex, and Scip progress as they approach th¢ exauat.

We also compared our approach with the method from [8] whiokides very good
bounds on the number of solutions for constraint satigdagbiroblems. The method is
based on the addition of random XOR-constraints. Unfotlpawe found that, in
combination with an integer programming problem, the metthoes not perform well.

Log; o Solution Count

N W~ 01 O N 00 ©
— T

0 05 1 15 2 25 3 35 4
Log;o Time [sec]

Fig. 2. Solution Count for the instance 20-720-2 with 1% objective gap. We ptéise progress
of the upper bound obtained by UBound and the lower bounds obtain@plex and Scip as
time progresses. The time and solution count are given on a logarithedecafdase 10. We run
UBound until depth 17 which is within the time that Cplex reaches the memory limit.

We tried using the vanilla codevhich was designed for pure CSPs. It did not perform
well for the ARP. So we modified the code, providing bettenhang variables for the
tree search and using linear bounds to prune the searchinipvatved the performance.
With this approach we are able to compute lower bounds, buipeting these takes
more time and the counts are worse than those provided by @pié Scip. Upper
bounds take even more time as the XOR constraints involve wemiables. We could
not obtain upper bounds within the time limit of three hoWk& conjecture that a tight
integration between the XOR constraints and linear inetigmlwould be needed to
make this approach, which gives very good results for CSBik well for optimization
problems.

3.5 Market Split
We next consider the market split problem (MSP), a benchneakwas suggested for
knapsack constraints in [20, 21].

3.6 Problem Formulation
The original definition goes back to [4, 22]: A large compaag kwo divisionsD; and
D-. The company supplies retailers with several products.gtia is to allocate each
retailer to either divisionD; or Dy so thatD; controls A% of the company’s market
for each product and, the remaining (100-A)%. Formulated as an integer program,
the problem reads:

Zjaijmj:L%Zjaijj VOo<i<m

zj € {0,1} VO<j<mn,

wherebym denotes the number of productsis the number of retailers, and; is the
demand of retailey of producti. MSPs are generally very hard to solve, especially
the randomly generated instances proposed by CornuejodlBawande where weight
coefficients are randomly chosen(ih...,100] and A = 50. Special CP approaches
for the MSP have been studied in [20, 21, 14, 9].

1 Many thanks to Ashish Sabharwal for providing us the source code!

Cplex Scip UBound
Depth 5 Depth 10 Depth 15
Instance| Count |Time| Count |Time| Count |Time| Count |Time| Count |[Time)

20-720-0/5.20E+0% M [1.01E+0625181.60E+1038.8|1.97E+08 137 | 3.31E+07|1183
20-720-1|3.15E+04 175 [3.15E+04 20.3|2.09E+053.16|1.48E+05%7.52| 1.02E+05| 40.9
20-720-2|1.77E+0% M [1.77E+05 414 |3.69E+079.51|1.36E+0745.2| 2.87E+06| 622
20-720-3|2.09E+02 3.39|2.09E+02 0.254.05E+024.19|2.99E+0212.5| 2.48E+02| 40.5
20-720-4/5.20E+03 76 |5.20E+03 6.7 [1.13E+057.24|1.79E+0423.1| 1.02E+04| 122
20-720-5|2.00E+04 174 [2.00E+04 22.5/1.58E+1222.2|6.81E+0858.8| 4.50E+04| 228
20-720-6|5.45E+04 932 (5.45E+04 153 |2.00E+0710.9|3.96E+0646.5| 1.68E+06| 431
20-720-7|/9.80E+01 1.68({9.80E+010.07|1.04E+022.82|1.04E+026.70| 1.03E+02| 16.7
20-720-8|1.77E+0513861.77E+03 298 |3.41E+0940.7|3.42E+07 191 | 9.00E+06| 899

20-720-9|1.88E+03 35.5[1.88E+03 1 |3.66E+034.23|3.48E+03 17 | 2.99E+03|87.8
50-1440-01.95E+04 T |[1.15E+07 T |7.95E+35353|1.21E+342572[1.21E+34] T
50-1440-15.59E+04 T |1.11E+07 T |3.75E+1073.8|2.21E+10 305| 1.85E+10(3025
50-1440-27.63E+04 T |[1.77E+06 T |1.05E+23293|1.76E+212635[1.76E+21] T
50-1440-36.00E+04 T |9.48E+06 T |3.56E+16¢ 149 |2.34E+1%452| 2.45E+14(3333
50-1440-47.13E+04 T |7.29E+03 T |4.15E+21412|4.31E+191852[4.31E+19] T
50-1440-59.33E+04 M |1.04E+06 T |3.28E+1090.4|7.06E+09 314 | 6.17E+09/4093
50-1440-61.20E+0% M |3.03E+06 T |7.53E+12101|2.44E+12350| 4.12E+11|3483
50-1440-74.92E+04 T |[1.96E+06 T |1.04E+20 396|6.03E+183037[6.03E+18] T
50-1440-88.90E+04 T |3.75E+05 T |5.56E+27 719|1.44E+253776[1.44E+25] T
50-1440-98.35E+04 M |9.55E+05% T |2.89E+14259|2.01E+13434| 2.09E+06| 578

Table 3. Numerical Results for the ARP Problem with 1% objective gap. We prekentpper

bound on the number of solutions and the CPU-time in seconds. 'T’ nthahshe time limit

has been reached and 'M’ indicates a solver has reached the memdryTlm numbers in
bold show exact counts and the numbers in square brackets denotstlebnt UBound could
achieve within the time limit.

3.7 Solution Counting for the MSP

Initialization: Our MSP formulation does not have an objective functionstiue
construct the grapty’ using the equation” Az > \”b, where); = 5'~! as proposed
in [20, 21].

Compatibility Labels, and Generate and Test: For the MSP, we strengthen the so-
lution counts by employing the compatibility labels intemed in [9]. We additionally
set up the DPs for the original equations in the problem.dfélarem > 3 constraints
in the MSP, we set um — 2 DPs where théth DP is defined by the sum of thigh
constraint plus five times thietfirst constraint plus 25 times thie-second constraint.

Often, the number of solutions to MSP instances is compgtall, and checking
feasibility is very fast. In case that we find an upper bounlésg than 50,000 we simply
generate and check those solutions for feasibility. Tleegfeach number that is less
than 50,000 is actually an exact count.

Cplex

Scip

UBound

Depth

5

Depth 10

Depth 15

Instance

Count

Time

Count |Time

Count

Time

Count

Time

Count

Time

20-720-0
20-720-1
20-720-2
20-720-3
20-720-4
20-720-5
20-720-6)
20-720-7
20-720-8,
20-720-9

6.80E+05
1.87E+05
3.00E+05
4.95E+07
8.89E+04
3.30E+05
2.80E+05
1.35E+04
3.00E+05
4.17E+03

M
969
T
5.77
1335
M
M
2.09
M
63.9

1.14E+07
1.87E+05
8.77E+06
4,95E+02
8.89E+04
3.32E+05
3.12E+06
1.35E+02
1.39E+07
4.17E+03

T
49.5
6528
0.42
73.5
618
1966
0.07
T

2.33

8.77E+11

4.56E+05

1.33E+0924.3
6.60E+02

3.94E+0¢
1.27E+15
3.80E+08

1.38E+02
7.16E+11

4.88E+03

73.8
431

5.80
10.3
43.9
19.3
3.70
82.3
7.38

9.23E+09
4.01E+05
1.65E+08
5.26E+02
3.26E+05
1.15E+13
9.20E+07
1.38E+02
4.91E+09
4.71E+03

326
8.76
218
24.2
53.3
277
84.9
9.94
727
201

2.30E+09
3.24E+05
5.07E+07
5.21E+02
2.36E+05
1.86E+09
6.24E+07
1.37E+02

[4.91E+09

4.57E+03

4002
46.2
2276
75.8
274
1540
911
27.2
T
135

3.11E+06

_|

50-1440-(

3.03E+04
50-1440-15.58E+04
50-1440-21.40E+05
50-1440-37.89E+04
50-1440-41.00E+05
50-1440-59.28E+04
50-1440-61.50E+05

_|

3.43E+06
8.97E+06
1.52E+07
1.35E+04
1.62E+04
1.68E+04

6.81E+52
8.06E+12
3.08E+24 893

2.5E+43

8.89E+22
3.03E+12

2.1E+34

992
221

460
996
252
341

[6.81E+52
1.01E+12
[3.08E+24
2.25E+32
[8.89E+22
1.82E+11
1.53E+29

T

[6.81E+52
[1.01E+12
[3.08E+24
[2.25E+32
[8.89E+22
[1.82E+11
[1.53E+29

1240
T
1802,
T
1679
1607

T
T
3482

6.9E+37
4.87E+3(
6.91E+46

1281
2264
1075

50-1440-77.66E+04
50-1440-81.10E+05
50-1440-94.65E+04

6.18E+06
6.73E+05
1.12E+07

[6.9E+37]
[4.87E+30
2.74E+29

[6.9E+37]
[4.87E+30
[2.74E+29

442242 4
I I T B I B
I I s B B I R

Table 4. Numerical Results for the ARP Problem with 2% objective gap. We prekentpper

bound on the number of solutions and the CPU-time in seconds. 'T’ nthahshe time limit

has been reached and 'M’ indicates a solver has reached the memdryTlm numbers in
bold show exact counts and the numbers in square brackets denotstlebnt UBound could
achieve within the time limit.

3.8 Experimental Results

For the purpose of solution counting, we consider the Cqalss®awande instances
as described before. Many of these instances are actuédigsible. When there are
m constraints, Cornuejols and Dawande introducer16(1) binary variables. We in-
troduce more variables to create less and less tightly netl instances which have
more solutions. We compare UBound again with the countsigeovby IBM Cplex
and Scip. As before, Cplex and Scip provide a lower bound $e ¢they time out. We
consider MSPs of orders 3 and 4 with an increasing number risiblas between 24
and 38.

We present our results in Table 5. As we can see, UBound pmswicgh quality
upper bounds very quickly as shown in the counts given inkatac Using the generate
and test technique, on all instances we are able to provige epunts in considerably
less time than Cplex and Scip.

[[[Cplex [Scipl [Uboundl | [] [[Cplex [Scip [Ubourjd]
[Ins|Order{#Varg Coun{Time[CounfTime| Count [Time| |[Ins|Ordef#Vars CounfTime|CounfTime|CounfTime|

1] 3 24 2 |1.78] 2 |57 2 3.92| [10] 4 34 2 |5707| 2 [1087] 2 |198
2| 3 24 0 [091f O |3.76 0 0.53| |11 4 34 0 |396| O (1088 O | 189
3| 3 24 0 |1.24 0 |294 0 051] 12| 4 34 2 |109 2 |955| 2 |190
41 3 30 | 32 | 39| 32 [107| 32(36) | 13 13| 4 36 6 |[1227) 6 |4175 6 |301
5| 3 30| 70 | 70 | 70 [117| 70(82) | 21 14| 4 36 2 |753| 2 [2400 2 |266
6| 3 30 | 54 | 78 | 54 | 174| 54(58) | 25 15| 4 36 6 |[366| 6 (2470 6 |278
71 3 36 | 2.3K 1962 2.3K |5118/2.3K (32K)| 176| |16| 4 38 | 12 |44220 11 | T 12 | 412
8| 3 36 | 292 | T |2.3K|92032.3K (23K)| 164| |17| 4 38 9 T 29 | T 36 | 405
9| 3 36 | 569 | T | 2K |5656| 2K (14K) | 130| (18| 4 38 | 44 [3391] 43 | T | 44 | 401

Table 5. Numerical Results for the MSP Problem. We present the upper boutiteamumber
of solutions found and the CPU-time taken in seconds for the binary eimstnodel and the
maximal clique model. 'T' means that the time limit has been reached. Thwers in bold
show exact counts. The numbers in parenthesis are our uppersbefate we generate and
check solutions for feasibility.

Again, we compared our results also with the XOR approacim fi@)]. After the
vanilla implementation from [8] did not provide competé#ivesults, we devised an
efficient code that can solve pure MSPs efficiently and add@dR Xonstraints to it.
Again, we found that the problems augmented by XORs are maictehto solve which
resulted in the approach timing out on our entire benchméfekattribute this behavior
to our inability to integrate the XOR constraints tightlytiwthe subset-sum constraints
in the problem.

4 Conclusions

We presented a new method for computing upper bounds on thbemof solutions of
BIPs. We demonstrated its efficiency on automatic recordimgmarket split problems.
We showed that standard methods for tightening the LP rétaxhy means of cutting
planes can be exploited also to provide better bounds ontmder of solutions. More-
over, we showed that a recent new method for integratinggbesed constraints more
tightly via so-called compatibility labels can be explditffectively to count solutions
for market split problems.

We do not see this method so much as a competitor to the ex&tintion counting
methods that are parts of IBM Cplex and Scip. Instead, weebelihat these solvers
could benefit greatly from providing upper bounds on the nemrdf solutions. This
obviously makes sense when the number of solutions is vegg land solution enu-
meration must fail. However, as we saw on the market splivlera, considering upper
bounds can also boost the performance dramatically on gmabthat have few num-
bers of solutions. In this case, our method can be used toagsigper-set of potential
solutions whose feasibility can be checked very quickly.

References

1. T. Achterberg. SCIP - A Framework to Integrate Constraint and §imeeger Programming.
http://ww. zi b. de/ Publ i cati ons/ abstract s/ ZR- 04- 19/
2. R.K. Ahuja, T.L. Magnati, J.B. Orlin. Network Flow®rentice Hall 1993.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

E. Birnbaum and E.L. Lozinskii. The Good Old Davis-Putnam Proee#ielps Counting
Models. Journal Of Artificial Intelligence Researcth0:457-477, 1999.

. G. Cornuejols and M. Dawande. A class of hard small 0-1 progrdgrzc. of the 6th Int.

IPCO Conference on Integer Programming and Combinatorial Optimiza#ig4-293, 1998.

. E. Danna, M. Fenelon, Z. Gu and R. Wunderling. Generating Multipleti®as for Mixed

Integer Programming Problemdnteger Programming and Combinatorial Optimization
(IPCO 2007) Vol. 4513, 2007.

. Object Bundle Optimization Package maintained by A. Frangioni.

www. di . uni pi.it/optim zel/ Software/Bundl e. ht m

. M.C. Golumbic. Algorithmic Graph Theory and Perfect Graphsademic Press, New York

1991.

. C.P. Gomes, W. Hoeve, A. Sabharwal, B. Selman. Counting CSE@&dWsing General-

ized XOR Constraints22nd Conference on Artificial Intelligence (AAA204-209, 2007.

. T. Hadzic, E. O'Mahony, B. O’Sullivan, M. Sellmann. Enhancefittance for the Market

Split Problem. 21st IEEE International Conference on Tools with Artificial Intelligence
(ICTAI), 716-723, 2009.

IBM. IBM CPLEXReference manual and user manual. V12.1, IBM 2009.

L. Kroc, A. Sabharwal and B. Selman. Leveraging Belief Prafiag, Backtrack Search,
and Statistics for Model Countindntegration of Al and OR Techniques in Constraint Pro-
gramming for Combinatorial Optimization Problems (CPAIQR}J8-282, 2008.

M. Sellmann. Approximated Consistency for Knapsack Constraiitsc. of the 9th Int.
Conference on the Principles and Practice of Constraint Programmi®),(€79-693, 2003.
M. Sellmann. Cost-Based Filtering for Shorter Path Constraimsc. of the 9th Int. Con-
ference on the Principles and Practice of Constraint Programming (683-708, 2003.

M. Sellmann. Theoretical Foundations of CP-based Lagrangian&®n.Proc. of the 10th
Int. Conference on the Principles and Practice of Constraint Progrargri@P), 634-647,
2004.

M. Sellmann, T. Fahle. Constraint Programming Based Lagramgaxation for the Au-
tomatic Recording ProblenfAnnals of Operations Research (AQRY-33, 2003.

M. Sellmann. Approximated Consistency for the Automatic Recordomgs€aint.Proc. of
the 11th Int. Conference on the Principles and Practice of Constraint@rogiing (CP)
822-826, 2005.

M. Sellmann. Approximated Consistency for the Automatic Recordogs€aint.Comput-
ers and Operations ResearcVbl. 36(8) 2341-2347, 2009.

ARP:A Benchmark Set for the Automatic Recording Probieaintained by M. Sellmann.
http://ww. cs. brown. edu/ peopl e/ sel | o/ ar p- benchmar k. ht mi

TIVO"™ Systemwwwy. t i vo. com

M. Trick. A Dynamic Programming Approach for Consistency anapBgation for Knap-
sack Constraints3rd Int. Workshop on Integration of Al and OR Techniques in Constraint
Programming for Combinatorial Optimization Problems (CPAIQR)3-124, 2001.

M. Trick. A Dynamic Programming Approach for Consistency anapBgation for Knap-
sack ConstraintsAnnals of Operations Researchl 8, 73-84, 2003.

H.P. Williams. Model Building in Mathematical Programmiyiley: Chicester1978.

A. Zanarini and G. Pesant. Solution counting algorithms for constraimered search
heuristics. Proc. of the 13th Int. Conference on Principles and Practice of CondtRiio-
gramming (CP)Vol. 4714, 743-757, 2007.

A. Zanarini and G. Pesant. Solution counting algorithms for constraimered search
heuristics.Constraints Vol. 14(3), pp. 392-413.

