
Upper Bounds on the Number of Solutions
of Binary Integer Programs

Siddhartha Jain, Serdar Kadioglu,⋆ Meinolf Sellmann⋆

Brown University, Department of Computer Science
115 Waterman Street, P.O. Box 1910, Providence, RI 02912

sj10,serdark,sello@cs.brown.edu

Abstract. We present a new method to compute upper bounds of the number of
solutions of binary integer programming (BIP) problems. Given a BIP,we create
a dynamic programming (DP) table for a redundant knapsack constraint which is
obtained by surrogate relaxation. We then consider a Lagrangian relaxation of the
original problem to obtain an initial weight bound on the knapsack. This bound
is then refined through subgradient optimization. The latter provides a variety of
Lagrange multipliers which allow us to filter infeasible edges in the DP table. The
number of paths in the final table then provides an upper bound on the number
of solutions. Numerical results show the effectiveness of our countingframework
on automatic recording and market split problems.

Keywords: solution counting, CP-based Lagrangian relaxation, surrogate relax-
ation, dynamic programming

1 Introduction

Solution counting has become a new and exciting topic in combinatorial research.
Counting solutions of combinatorial problem instances is relevant for example for new
branching methods [23, 24]. It is also relevant to give user feedback in interactive set-
tings such as configuration systems. Moreover, it plays an ever more important role
in post-optimization analysis to give the user of an optimization system an idea how
many solutions there are within a certain percentage of the optimal objective value. The
famous mathematical programming tool Cplex for example nowincludes a solution
counting method. Finally, from a research perspective the problem is interesting in its
own right as it constitutes a natural extension of the mere optimization task.

Solution counting is probably best studied in the satisfaction (SAT) community
where a number of approaches have been developed to estimatethe number of solu-
tions of under-constrained instances. First attempts to count the number of solutions
often simply consisted in extending the run of a solution finding systematic search after
a first solution has been found [3]. More sophisticated randomized methods estimate
upper and lower bounds with high probability. In [8], e.g., in a trial an increasing num-
ber of random XOR constraints are added to the problem. The upper and lower bounds

⋆ This work was supported by the National Science Foundation through the Career: Cornflower
Project (award number 0644113).

on the number of solutions depends on how many XORs can be added before the in-
stance becomes infeasible, whereby the probability that the bound is correct depends
on the number of trials where (at least or at most) the same number of XORs can be
added before the instance changes its feasibility status.

An interesting trend in constraint programming (CP) is to estimate solution den-
sity via solution counting for individual constraints [23,24]. Since the solution density
information is used for branching, it is important that these methods run very fast. Con-
sequently, they are constraint-based and often give estimates on the number of solutions
rather than hard upper and lower bounds or bounds that hold with high probability.

In mathematical programming, finally, the IBM Cplex IP solution counter [5, 10]
enumerates all solutions while aiming at finding diverse setof solutions, and the Scip
solution counter finds the number of all feasible solutions using a technique to collect
several solutions at once [1]. Stopped prematurely at some desired time-limit, these
solvers provide lower bounds on the number of solutions.

Considering the literature, we find that a big emphasis has been laid on the compu-
tation of lower bounds on the number of solutions of a given problem instance. Apart
from the work in [8] and the upper bounding routine for SAT in [11], we are not aware
of any other approaches that provide hard or high probability upper bounds on the num-
ber of solutions. Especially solution counters that are part of the IBM Cplex and the Scip
solver would benefit if an upper bound on the number of solutions could be provided
alongside the lower bound in case that counting needs to be stopped prematurely.

With this study we attempt to make a first step to close this gap. In particular, we
consider binary integer programs and propose a general method for computing hard
upper bounds on the number of feasible solutions. Our approach is based on the ex-
ploitation of relaxations, in particular surrogate and Lagrangian relaxations. Experi-
mental results on automatic recording and market split problems provide a first proof
of concept.

2 Upper Bounds on the Number of Solutions for Binary Integer
Programs

We assume that the problem instance is given in the format

(BIP) pT x ≥ B
Ax ≤ b
xi ∈ {0, 1}.

Wlog, we assume that the profit coefficients are integers. Although we could mul-
tiply the first inequality with minus one, we make it stand outas the original objective
of the binary integer program (BIP) that was to be maximized.Usually, in branch and
bound approaches, we consider relaxations to compute upperbounds on that objective.
For example, we may solve the linear program (LP)

Maximize L = pT x
Ax ≤ b
0 ≤ xi ≤ 1

and check whetherL ≥ B for an incumbent integer solution with valueB to prune the
search.

For our task of computing upper bounds on the number of solutions, relaxing the
problem is the first thing that comes to mind. However, standard LP relaxations are
not likely to be all that helpful for this task. Assume that there are two (potentially
fractional) solutions that have an objective value greateror equalB. Then, there exist
infinitely many fractional solutions that have the same property.

Consequently, we need to look for a relaxation which preserves the discrete charac-
ter of the original problem. We propose to use the surrogate relaxation for this purpose.
In the surrogate relaxation, we choose multipliersλi ≥ 0 for each linear inequality
constrainti and then aggregate all constraints into one. We obtain:

Maximize S = pT x
λT Ax ≤ λT b
xi ∈ {0, 1}.

This problem is well known, it is a knapsack problem (that mayhave negative weights
and/or profits). Let us setw ← wλ ← AT λ andC ← Cλ ← λT b. Then, we insert the
profit thresholdB back into the formulation. This is sound asS is a relaxation of the
original problem. We obtain a knapsack constraint

(KP) pT x ≥ B
wT x ≤ C
xi ∈ {0, 1}.

2.1 Filtering Knapsack Constraints

In [12], knapsack constraints were studied in great detail and exact pseudo-polynomial
time filtering algorithms were developed which are based on adynamic programming
formulation of knapsack. First, the knapsack instance is modified so that all profitspi

are non-negative. This can be achieved by potentially replacing a binary variablexi (in
the context of knapsack we often refer to the indexi as anitem) with its ’negation’
x′

i = 1 − xi. Then, in a cellMq,k we store the minimum knapsack weight needed to
achieve exactly profitq when only items{1, . . . , k} can be included in the knapsack
(i.e., when all variables in{xk+1, . . . , n} are set to 0). Then, the following recursion
equation holds:

Mq,k = min{Mq,k−1,Mq−pk,k−1 + wk}. (1)

To filter the constraint we interpret the DP as a weighted directed acyclic graph
(DAG) where the cells are the nodes and nodes that appear in the same recursion are
connected (see left graph in Figure 1). In particular, we defineG = (V,E, v) by setting

– VM := {Mq,k | 0 ≤ k ≤ n}.
– V := VM ∪ {t}.
– E0 := {(Mq,k−1,Mq,k) | k ≥ 1, Mq,k ∈ VM}.
– E1 := {(Mq−pk,k−1,Mq,k) | k ≥ 1, q ≥ pk, Mq,k ∈ VM}.
– Et := {(Mq,n, t) | q ≥ B, Mq,n ∈ VM}.
– E := E0 ∪ E1 ∪ Et.

140

1 2 430
items

profits

t

3 3 4 5 0 arc−weights

10
20

0

30
40
50
60
70
80
90

100
110
120
130

��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������

����������������������������������

��������������������������

5
3

140

1 2 430
items

profits

t

3 0 arc−weights213
5 ������

���
���
���
���

��
��
��
��

��
��
��
��

��������

10
20

0

30
40
50
60
70
80
90

100
110
120
130

Fig. 1. The figure shows dynamic programming tables for a knapsack constraint with four vari-
ables, profitspT = (50, 40, 30, 20), and profit constraint thresholdB = 82. In the left figure
the weights arewT = (3, 3, 4, 5), and the knapsack’s capacity isC = 10. In the right figure
the weights arewT = (13/5, 5/3, 3, 2), and the capacity isC = 19/3. The node-labels are
defined by their row and column number, the sink nodet is marked separately. The value of
non-horizontal arcs that cross a vertical line is given under that line, horizontal arcs have weight
0. Hollow nodes and dashed arcs mark those nodes and arcs that are removed by the filtering
algorithm, because there exists no path fromM0,0 to t with weight lower or equalC that visits
them.

– v(e) := 0 for all e ∈ E0 ∪ Et.
– v(Mq−pk,k−1,Mq,k) := wk for all (Mq−pk,k−1,Mq,k) ∈ E1.

We consider the DAGG because there is a one-to-one correspondence between
paths fromM0,0 to t and variable instantiations that yield a profit greater thanB. More-
over, the length of such a path is exactly the weight of the corresponding instantiation.
Therefore, every path fromM0,0 (thesource) to t (thesink) with length lower or equal
C defines a feasible, improving solution (we call such pathsadmissible). Vice versa,
every feasible, improving solution also defines an admissible path from source to sink
with length lower or equalC.

The filtering algorithm in [12] removes edges fromG that cannot be part of any
admissible path. This is done using a filtering routine for shorter path constraints on
DAGs from [13]: We first compute the shortest path distances from the source to all
nodes using the topological ordering of the DAG, thus being able to handle shortest
path problems even non-negative edge weights in time linearin the size of the graph.
In an analogous second pass which begins at the sink we compute the shortest path
distances to the sink. Equipped with both distances for eachnode, we can compute the
shortest path lengths from source to sink through each edge in the graph – and remove
all edges and nodes which cannot lie on any admissible path.

2.2 Upper Bounds on the Number of Solutions

In [12], the resulting DP is analyzed using a technique from [20, 21] to identify which
variables cannot take value 0 or value 1. We do not perform this last step. Instead,
we use the resulting DP to count the number of paths from source to sink using the
technique in [23, 24]. Note that any solution to (BIP) fulfills the redundant constraint

(KP) and therefore corresponds to an admissible path in our DP. Moreover, two different
solutions also define two different paths in the DP. Therefore, the number of paths in
the DP gives an upper bound on the number of solutions in (BIP).

Now, the quality of the upper bound will depend on the choice of the initial vector
λ. In ordinary optimization, we aim for a choice ofλ for which the surrogate relaxation
gives the tightest relaxation value. However, for the purpose of filtering we know that
sub-optimal multipliersλ can provide better filtering effectiveness [14]. Consider the
following example:

(EX) 50x1 + 40x2 + 30x3 + 20x4 ≥ 82
3x1 + x2 + 3x3 ≤ 5
2x2 + x3 + 5x4 ≤ 5
xi ∈ {0, 1}.

If we useλ = (1, 1)T , e.g., then we get the knapsack constraint as shown in the
left graph of Figure 1 with a relaxation value of 120 (as that is the highest profit
visited by the remaining admissible paths). On the other hand, had we chosenλ =
(13/15, 6/15)T , we would have obtained the knapsack constraint in the rightgraph of
Figure 1 with an improved upper bound of 110.

Comparing the two DPs, we find that the two choices forλ yield incomparable
filtering effectiveness. Although the second set of multipliers gives a strictly better up-
per bound, it cannot remove the edge(M90,3,M110,4). On the other hand, the second
choice forλ allows us to remove the edges(M90,2,M120,3) and(M120,3,M120,4). This
effect has been studied before in [14]. The explanation for the different filtering be-
havior is that, in principle, each edge has its own vectorλ that maximally challenges
admissibility (as measured by the shortest path length through that edge).

In principle, we could employ a probing procedure. For each edge, we remove all
edges on the same level, thus enforcing that each path from source to sink must pass
through this edge. Then, we start with some selection forλ and compute the shortest
path length according to the corresponding weightswλ as well as the corresponding
BIP solutionxλ. If wT

λ xλ > Cλ, then we can remove the edge. Otherwise, we modify
λ to minimizeCλ − wT

λ xλ as much as possible. From the theory of Lagrangian relax-
ation (see for example [2]) we know that finding the optimal choice forλ consists in
minimizing a piecewise linear convex function. Consequently, we can use a subgradient
search algorithm to find the vectorλ ≥ 0 which will minimize Cλ − wT

λ xλ as much
as possible and thus enable us to decide whether anyλ exists that would allow us to
remove the edge under consideration.

The problem with this procedure is of course that it takes waytoo much time to
probe each individual edge. Instead, we follow the same method as in CP-based La-
grangian relaxation [15]. That is, we employ a subgradient search to find a vectorλ that
minimizesCλ − wT

λ xλ in the DP. Then, for eachλ that the subgradient search consid-
ers, we use our edge-filtering algorithms to remove edges from the graph. That way,
we hope to visit a range of different settings forλ that will hopefully remove a large
percentage of edges in the DP that can be discarded.

Consider again our example (EX) from before. If we first prunethe graph with
respect to the weight vectorw from the left graph in Figure 1 and then, in the pruned

graph, remove edges based on the weight vectorw from the right graph in Figure 1, then
we end up with only one path which corresponds to the only solution to (EX) which is
x = (1, 1, 0, 0)T .

2.3 The Algorithm

Algorithm 1 BIP Counting Algorithm
1: Negate binary variables with profitpi < 0.
2: Set up the graphG for {x ∈ {0, 1}n | pT x ≥ B}.
3: Initializeλ.
4: while subgradient method not convergeddo
5: Setw ← λT A, C ← λT b.
6: PropagatewT x ≤ C in G removing inadmissible edges.
7: Compute the solutionx that corresponds to the shortest path from source to sink in(G, w).
8: Updateλ according to the current gapC − wT x and the subgradientAx− b.
9: end while

10: Count the number of paths from source to sink in G and return that number.

The complete procedure is sketched in Algorithm 1. Note how we first increase the
number of solutions by considering the cardinality of the set R← {x ∈ {0, 1}n | pT x ≥
B} instead ofP ← {x ∈ {0, 1}n | pT x ≥ B & Ax ≤ b}. Then, to reduce the number
of solutions again, we heuristically remove edges from the DP that has exactly one path
for eachx ∈ R by propagating constraintsλT Ax ≤ λT b for various choices ofλ in the
DP. The resulting number of paths in the DP gives a hard upper bound on the number
of solutions to the original BIP.

2.4 Strengthening the Bound – Cutting Planes, Tree Search, Compatibility
Labels, and Generate and Check

A nice property of our approach is that we can use all the usualmethods for strength-
ening linear continuous relaxations, such as preprocessing and especially adding valid
inequalities, so-called cutting planes, to the BIP which tighten the continuous relax-
ation.

To strengthen the upper bound on the solution count further,we can embed our
procedure in a branch-and-bound tree search algorithm which we truncate at some given
depth-limit. The sum of all solutions at all leafs of the truncated tree then gives an upper
bound on the number of solutions.

For very hard combinatorial counting problems we may consider doing even more.
In our outline above, we use the profit constraint to define thegraphG. In principle, we
could use any vectorµ of natural numbers and consider the constraint(pT − µT A)x ≥
B − µT b to set up the DP. This is needed in particular when there is no designated
objective function. We notice, however, that we do not need to restrict us to using just
one DP. Instead, we can set up multiple DPs for different choices ofµ.

The simplest way to strengthen the upper bound on the number of solutions is to take
the minimum count over all DPs. However, we can do much betterthan that. Following

an idea presented in [9], we can compute compatibility labels between the different
DPs: Let us denote withGA andGB the graphs that correspond to two different DPs
for our problem. Our filtering algorithm ensures that each edge in the graph is visited
by at least one admissible path. The compatibility labels from [9] aim to ensure that
an edge inGA is also supported by a (not necessarily admissible) path inGB . More
precisely, for each edge inGA we ensure that there is a path from source to sink inGA

that visits the edge and which corresponds to a solution which also defines a path from
source to sink inGB .

Finally, if we have found an upper bound on the solution countthat is rather small,
we can generate all potential solutions which is very easy given our DAGG. Then, we
test each assignment for feasibility and thus provide an exact count.

3 Numerical Results

3.1 Automatic Recording

We first consider the automatic recording problem (ARP) thatwas introduced in [15].

3.2 Problem Formulation

The technology of digital television offers to hide meta-data in the content stream. For
example, an electronic program guide with broadcasting times and program annotation
can be transmitted. An intelligent video recorder like the TIVOtm system [19] can ex-
ploit this information and automatically record TV contentthat matches the profile of
the system’s user. Given a profit value for each program within a predefined planning
horizon, the system has to make the choice which programs shall be recorded, whereby
two restrictions have to be met:

– The disk capacity of the recorder must not be exceeded.
– Only one program can be recorded at a time.

While the problem originally emerged from automatic video recording, it has other
applications, for example in satellite scheduling. Various algorithms for the ARP have
been studied in [15, 14, 16, 17]. The problem can be stated as abinary integer program:

Maximize pT x
wT x ≤ K
xi + xj ≤ 1 ∀ 0 ≤ i ≤ j ≤ n, Ii ∩ Ij 6= ∅
x ∈ {0, 1}n

(ARP 1)

wherepi andwi represent the profit and the storage requirement of programi, K is the
storage capacity, andIi := [startT ime(i), endT ime(i)] corresponds to the broadcast-
ing interval of programi. The objective function maximizes the user satisfaction while
the first constraint enforces the storage restrictions. Constraints of the formxi +xj ≤ 1
ensure that at most one program is recorded at each point in time.

This formulation can be tightened by considering the conflict graph and adding the
corresponding clique constraints to the formulation [15].

Definition 1. The setC ⊆ V is called a conflict clique iffIi ∩ Ij 6= ∅ ∀ i, j ∈ C. A
conflict cliqueC is called maximal iff∀ D ⊆ V,D conflict clique:C ⊆ D ⇒ C = D.
LetM := {C0, . . . , Cm−1} ⊆ 2V the set of maximal conflict cliques.

These clique constraints are obviously valid inequalitiessince, ifxi +xj ≤ 1 for all
overlapping intervals, it is also true that

∑
i∈Cp

xi ≤ 1 ∀ 0 ≤ p ≤ m. We can therefore
add the clique constraints to our original formulation.

Maximize pT x
wT x ≤ K
xi + xj ≤ 1 ∀ 0 ≤ i ≤ j ≤ n, Ii ∩ Ij 6= ∅∑

i∈Cp
xi ≤ 1 ∀ 0 ≤ p ≤ m

x ∈ {0, 1}n

(ARP 2)

Though being NP-complete on general graphs, finding maximalcliques on the
graph defined by our application is simple:

Definition 2. A graphG = (V,E) is called an interval graph if there exist intervals
I1, . . . , I|V | ⊂ R such that∀vi, vj ∈ V : (vi, vj) ∈ E ⇐⇒ Ii ∩ Ij 6= ∅.

On interval graphs, the computation of maximal cliques can be performed inO(n log n) [7].
Hence, ARP 2 can be obtained in polynomial time.

3.3 Solution Counting for the ARP

We will now describe how we apply our counting algorithm to the ARP problem.

Initialization: The graphG for our ARP formulation is set up using the equation
wT x ≤ K, wherewi represents the storage requirement of programi andK is the
storage capacity.

Tree Search, and Generate and Test:To strengthen the quality of our bounds on
the number of solutions, we employ a truncated tree search asdescribed earlier. For
branching, we select the variable with the highest knapsackefficiencypi/wi which is
also selected in the shortest path in the DP according to the final multipliersλ. When
we get total solution counts below 100 we generate all solutions and test them for fea-
sibility.

Subgradient Optimization: At every choice point, we conduct the subgradient search
using the object bundle optimization package from Frangioni [6]. On top of filtering
with respect to the vectorsλ that the subgradient optimizer visits, we also propagate
the constraintwT x ≤ K in the DP at every choice point. At leaf nodes, also choose
randomly 3% of the original constraints in ARP 1 or ARP 2 and propagate them to
prune the DPs one last time before counting the number of paths from source to sink.

3.4 Experimental Results

We used a benchmark set described in [15, 14] which can downloaded at [18]. This
benchmark set consists of randomly generated instances which are designed to mimic
features of real-world instances for the automatic recording of TV content. For our

ARP-1 ARP-2
Inst. Gap Count Time Count Time

0 0% 2 20 2 3.2
1 0% 3 10 1 1.5
2 0% 1 16 1 2.8

0 1% 2.27E+10 90 1.60E+1038.8
1 1% 3.26E+05 12 2.09E+05 3.2
2 1% 8.36E+07 33 3.69E+07 9.5

0 2% 7.51E+12 133 8.77E+1173.8
1 2% 9.06E+05 13 4.56E+05 4.3
2 2% 2.87E+09 68 1.33E+09 24

ARP-1 ARP-2
Inst. Gap Count Time Count Time

0 0% 39 1109 39 34
1 0% 203 933 35 20
2 0% 15 1146 15 22

0 1% 6.54E+432636 7.95E+35 353
1 1% 7.82E+101100 3.75E+10 73
2 1% 5.25E+23 314 1.05+23 294

0 2% 4.75E+595169 6.81E+52 992
1 2% 2.57E+133639 8.06E+12 221
2 2% 1.33E+266873 3.08E+24 893

Table 1.Numerical Results for the ARP Problem. We present the upper bound onthe number of
solutions and the CPU-time in seconds for the binary constraint model (ARP-1) and the maximal
clique model (ARP-2). The table on the left is for the small sized data set (20-720) with 20
channels and 720 minute time horizon, and the table on the right is for the large sized data set
(50-1440) with 50 channels and 1440 minute time horizon. In this experiment, we do not generate
and check solutions for feasibility.

experiments, we use the class usefulness (CU) instances. Weconsider a small sized
data set which spans half a day (720 minutes) and consists of 20 channels, and a large
sized data set which spans a full day (1440 minutes) and consists of 50 channels. Profits
for each program are chosen based on the class that a program belongs to. This class
also determines the parameters according to which its length is randomly chosen. On
average, these instances have 300 and 1500 programs, respectively. All experiments
in this paper were performed on a machine with Intel Core 2 Quad Q6600, 2.4GHz
CPUs and 2GByte of RAM operating Linux Debian 5.0.3 32-bit. On all experiments,
we enforced a time limit of 3 hours CPU time.

Our first evaluation compares the effectiveness of the models described by ARP 1
and ARP 2 in terms of the upper bound on the solution count thatthey provide and the
time they take. Specifically, we are interested in the increase of the number of solutions
as we move away from the optimal value. To this end, we introduce theGapparameter
which indicates the percentage gap between a threshold and the optimal value. We only
consider solutions that achieve an objective value above the threshold. We experiment
with objective gaps of 0%, 1% and 2% and truncate the search atdepth 5. Table 1 shows
that the ARP 2 formulation which includes the clique cuts provides much better upper
bounds than ARP 1 in substantially less time. This indicatesthat exploiting the common
methods for strengthening LP relaxations can also be exploited effectively to compute
superior upper bounds on the number of solutions of BIPs. Thefact that ARP 2 actually
runs faster can be attributed to the fact that the cutting planes allow much better edge-
filtering effectiveness. Therefore, the DP contains much fewer edges higher up in the
tree, which leads to much faster times per choice point.

We next compare our approach (UBound) with the Cplex IP solution counter which
enumerates all solutions [10, 5] and the Scip solution counter which collects several
solutions at a time. Note that Cplex and Scip provide only a lower bound in case they
time out or reach the memory limit. We again consider objective gaps 0%, 1% and 2%.

Cplex Scip Ubound

Inst. CountTime CountTime CountTime

0 2 0.17 2 0.3 2 3.16
1 1 0.03 1 0.05 1 1.53
2 1 0.08 1 1 2.75
3 1 0.04 1 0.03 1 1.71
4 1 0.06 1 0.06 1 2.46
5 12 0.62 12 0.16 12 3.83
6 6 0.17 6 6 2.47
7 1 0.07 1 0.03 1 1.60
8 1 0.09 1 0.06 1 2.45
9 3 0.37 3 0.04 3 2.30

Cplex Scip Ubound

Inst. CountTime CountTime Count Time

0 39 182 39 1.91 39 34.3
1 35 T 35 100 35 20.7
2 14 0.98 14 1.54 14 (15) 30.5
3 6 0.64 6 0.25 6 30.2
4 20 2.52 20 0.51 20 30.8
5 1 0.34 1 0.4 1 20.9
6 33 3.95 33 71 33 (39) 27.5
7 1 0.49 1 0.31 1 58.0
8 4 2.16 4 1.95 4 69.6
9 6 27.1 6 1.81 6 43.8

Table 2. Numerical Results for the ARP Problem with 0% objective gap. We presentthe upper
bound on the number of solutions and the CPU-time in seconds at depth 5. The table on the left
is for the small sized data set (20-720) with 20 channels and 720 minute timehorizon, and the
table on the right is for the large sized data set (50-1440) with 50 channelsand 1440 minute time
horizon. ’T’ means that the time limit has been reached. The numbers in bold show exact counts
and the numbers in parenthesis are our upper bounds before we generate and check solutions for
feasibility.

For 0% gap, we run our method with depth 5 which is adequate to achieve the exact
counts. For higher gaps, we present the results for depths 5,10, and 15.

Our results are presented in Table 2, Table 3, and Table 4. Forthe optimal objective
threshold, UBound provides exact counts for all test instances. In terms of running time,
UBound does not perform as quickly as the IBM Cplex and the Scip solution counter.
There is only one notable exception to this rule, instance 50-1440-1. On this instance,
Scip takes 100 seconds and Cplex times out after three hours while our method could
have provided the 35 solutions to the problem in 20 seconds.

This discrepancy becomes more evident when we are interested in the number of
solutions that are with 1% or 2% of the optimum. As we can see from Table 3 and
Table 4 the number of solutions increases very rapidly even for those small objective
gaps. Not surprisingly, the counts obtained by Cplex and Scip are limited by the number
of solutions they can enumerate within the memory and the time constraints, yielding
a count of roughly 1E+5 to 1E+7 solutions in most cases. Due tothe explosion in
the number of solutions, Cplex and Scip are never able to giveexact counts for the
large instances but only give a lower bound. Cplex hits the time cutoff in 17 out of
20 large instances and reaches the memory limit for the remaining 3, and Scip times
out in all large instances. In most cases where Cplex or Scip are able to find the exact
counts, UBound is able to provide tight upper bounds that arenot more than an order
of magnitude bigger. In Figure 2, we show how the upper and lower bounds obtained
by UBound, Cplex, and Scip progress as they approach the exact count.

We also compared our approach with the method from [8] which provides very good
bounds on the number of solutions for constraint satisfaction problems. The method is
based on the addition of random XOR-constraints. Unfortunately, we found that, in
combination with an integer programming problem, the method does not perform well.

 2

 3

 4

 5

 6

 7

 8

 9

 0 0.5 1 1.5 2 2.5 3 3.5 4

Lo
g 1

0
S

ol
ut

io
n

C
ou

nt

Log10 Time [sec]

UBound
Scip

Cplex

Fig. 2. Solution Count for the instance 20-720-2 with 1% objective gap. We present the progress
of the upper bound obtained by UBound and the lower bounds obtained byCplex and Scip as
time progresses. The time and solution count are given on a logarithmic scale of base 10. We run
UBound until depth 17 which is within the time that Cplex reaches the memory limit.

We tried using the vanilla code1 which was designed for pure CSPs. It did not perform
well for the ARP. So we modified the code, providing better branching variables for the
tree search and using linear bounds to prune the search. Thatimproved the performance.
With this approach we are able to compute lower bounds, but computing these takes
more time and the counts are worse than those provided by Cplex and Scip. Upper
bounds take even more time as the XOR constraints involve more variables. We could
not obtain upper bounds within the time limit of three hours.We conjecture that a tight
integration between the XOR constraints and linear inequalities would be needed to
make this approach, which gives very good results for CSPs, work well for optimization
problems.

3.5 Market Split
We next consider the market split problem (MSP), a benchmarkthat was suggested for
knapsack constraints in [20, 21].

3.6 Problem Formulation
The original definition goes back to [4, 22]: A large company has two divisionsD1 and
D2. The company supplies retailers with several products. Thegoal is to allocate each
retailer to either divisionD1 or D2 so thatD1 controls A% of the company’s market
for each product andD2 the remaining (100-A)%. Formulated as an integer program,
the problem reads:∑

j aijxj = ⌊ A
100

∑
j aij⌋ ∀ 0 ≤ i < m

xj ∈ {0, 1} ∀ 0 ≤ j < n,

wherebym denotes the number of products,n is the number of retailers, andaij is the
demand of retailerj of producti. MSPs are generally very hard to solve, especially
the randomly generated instances proposed by Cornuejols and Dawande where weight
coefficients are randomly chosen in[1, . . . , 100] andA = 50. Special CP approaches
for the MSP have been studied in [20, 21, 14, 9].

1 Many thanks to Ashish Sabharwal for providing us the source code!

Cplex Scip UBound

Depth 5 Depth 10 Depth 15

Instance Count Time Count Time Count Time Count Time Count Time

20-720-0 5.20E+05 M 1.01E+0625181.60E+1038.8 1.97E+08 137 3.31E+07 1183

20-720-1 3.15E+04 175 3.15E+04 20.3 2.09E+053.16 1.48E+057.52 1.02E+05 40.9

20-720-2 1.77E+05 M 1.77E+05 414 3.69E+079.51 1.36E+0745.2 2.87E+06 622

20-720-3 2.09E+02 3.39 2.09E+02 0.25 4.05E+024.19 2.99E+0212.5 2.48E+02 40.5

20-720-4 5.20E+03 76 5.20E+03 6.7 1.13E+057.24 1.79E+0423.1 1.02E+04 122

20-720-5 2.00E+04 174 2.00E+04 22.5 1.58E+1222.2 6.81E+0858.8 4.50E+04 228

20-720-6 5.45E+04 932 5.45E+04 153 2.00E+0710.9 3.96E+0646.5 1.68E+06 431

20-720-7 9.80E+01 1.68 9.80E+01 0.07 1.04E+022.82 1.04E+026.70 1.03E+02 16.7

20-720-8 1.77E+0513861.77E+05 298 3.41E+0940.7 3.42E+07 191 9.00E+06 899

20-720-9 1.88E+03 35.5 1.88E+03 1 3.66E+034.23 3.48E+03 17 2.99E+03 87.8

50-1440-01.95E+04 T 1.15E+07 T 7.95E+35 353 1.21E+342572[1.21E+34] T

50-1440-15.59E+04 T 1.11E+07 T 3.75E+1073.8 2.21E+10 305 1.85E+10 3025

50-1440-27.63E+04 T 1.77E+06 T 1.05E+23 293 1.76E+212635[1.76E+21] T

50-1440-36.00E+04 T 9.48E+06 T 3.56E+16 149 2.34E+15 452 2.45E+14 3333

50-1440-47.13E+04 T 7.29E+05 T 4.15E+21 412 4.31E+191852[4.31E+19] T

50-1440-59.33E+04 M 1.04E+06 T 3.28E+1090.4 7.06E+09 314 6.17E+09 4093

50-1440-61.20E+05 M 3.03E+06 T 7.53E+12 101 2.44E+12 350 4.12E+11 3483

50-1440-74.92E+04 T 1.96E+06 T 1.04E+20 396 6.03E+183037[6.03E+18] T

50-1440-88.90E+04 T 3.75E+05 T 5.56E+27 719 1.44E+253776[1.44E+25] T

50-1440-98.35E+04 M 9.55E+05 T 2.89E+14 259 2.01E+13 434 2.09E+06 578

Table 3. Numerical Results for the ARP Problem with 1% objective gap. We presentthe upper
bound on the number of solutions and the CPU-time in seconds. ’T’ meansthat the time limit
has been reached and ’M’ indicates a solver has reached the memory limit. The numbers in
bold show exact counts and the numbers in square brackets denote the best count UBound could
achieve within the time limit.

3.7 Solution Counting for the MSP

Initialization: Our MSP formulation does not have an objective function, thus we
construct the graphG using the equationλT Ax ≥ λT b, whereλi = 5i−1 as proposed
in [20, 21].

Compatibility Labels, and Generate and Test: For the MSP, we strengthen the so-
lution counts by employing the compatibility labels introduced in [9]. We additionally
set up the DPs for the original equations in the problem. If there arem > 3 constraints
in the MSP, we set upm − 2 DPs where thekth DP is defined by the sum of thekth
constraint plus five times thek+first constraint plus 25 times thek+second constraint.

Often, the number of solutions to MSP instances is comparably low, and checking
feasibility is very fast. In case that we find an upper bound ofless than 50,000 we simply
generate and check those solutions for feasibility. Therefore, each number that is less
than 50,000 is actually an exact count.

Cplex Scip UBound

Depth 5 Depth 10 Depth 15

Instance Count Time Count Time Count Time Count Time Count Time

20-720-0 6.80E+05 M 1.14E+07 T 8.77E+1173.8 9.23E+09 326 2.30E+09 4002

20-720-1 1.87E+05 969 1.87E+05 49.5 4.56E+054.31 4.01E+05 8.76 3.24E+05 46.2

20-720-2 3.00E+05 T 8.77E+0665281.33E+0924.3 1.65E+08 218 5.07E+07 2276

20-720-3 4.95E+02 5.77 4.95E+02 0.42 6.60E+025.80 5.26E+02 24.2 5.21E+02 75.8

20-720-4 8.89E+0413358.89E+04 73.5 3.94E+0610.3 3.26E+05 53.3 2.36E+05 274

20-720-5 3.30E+05 M 3.32E+05 618 1.27E+1543.9 1.15E+13 277 1.86E+09 1540

20-720-6 2.80E+05 M 3.12E+0619663.80E+0819.3 9.20E+07 84.9 6.24E+07 911

20-720-7 1.35E+02 2.09 1.35E+02 0.07 1.38E+023.70 1.38E+02 9.94 1.37E+02 27.2

20-720-8 3.00E+05 M 1.39E+07 T 7.16E+1182.3 4.91E+09 727 [4.91E+09] T

20-720-9 4.17E+03 63.9 4.17E+03 2.33 4.88E+037.38 4.71E+03 29.1 4.57E+03 135

50-1440-03.03E+04 T 3.11E+06 T 6.81E+52 992 [6.81E+52] T [6.81E+52] T

50-1440-15.58E+04 T 3.43E+06 T 8.06E+12 221 1.01E+12 1240[1.01E+12] T

50-1440-21.40E+05 M 8.97E+06 T 3.08E+24 893 [3.08E+24] T [3.08E+24] T

50-1440-37.89E+04 T 1.52E+07 T 2.5E+43 460 2.25E+32 1802[2.25E+32] T

50-1440-41.00E+05 M 1.35E+06 T 8.89E+22 996 [8.89E+22] T [8.89E+22] T

50-1440-59.28E+04 M 1.62E+06 T 3.03E+12 252 1.82E+11 1679[1.82E+11] T

50-1440-61.50E+05 M 1.68E+06 T 2.1E+34 341 1.53E+29 1607[1.53E+29] T

50-1440-77.66E+04 T 6.18E+06 T 6.9E+37 1281 [6.9E+37] T [6.9E+37] T

50-1440-81.10E+05 M 6.73E+05 T 4.87E+302264[4.87E+30] T [4.87E+30] T

50-1440-94.65E+04 T 1.12E+07 T 6.91E+461075 2.74E+29 3482[2.74E+29] T

Table 4. Numerical Results for the ARP Problem with 2% objective gap. We presentthe upper
bound on the number of solutions and the CPU-time in seconds. ’T’ meansthat the time limit
has been reached and ’M’ indicates a solver has reached the memory limit. The numbers in
bold show exact counts and the numbers in square brackets denote the best count UBound could
achieve within the time limit.

3.8 Experimental Results

For the purpose of solution counting, we consider the Cornuejols-Dawande instances
as described before. Many of these instances are actually infeasible. When there are
m constraints, Cornuejols and Dawande introduce 10(m − 1) binary variables. We in-
troduce more variables to create less and less tightly constrained instances which have
more solutions. We compare UBound again with the counts provided by IBM Cplex
and Scip. As before, Cplex and Scip provide a lower bound in case they time out. We
consider MSPs of orders 3 and 4 with an increasing number of variables between 24
and 38.

We present our results in Table 5. As we can see, UBound provides high quality
upper bounds very quickly as shown in the counts given in brackets. Using the generate
and test technique, on all instances we are able to provide exact counts in considerably
less time than Cplex and Scip.

Cplex Scip Ubound
Ins Order #Vars Count Time Count Time Count Time

1 3 24 2 1.78 2 5.7 2 3.92
2 3 24 0 0.91 0 3.76 0 0.53
3 3 24 0 1.24 0 2.94 0 0.51
4 3 30 32 39 32 107 32 (36) 13
5 3 30 70 70 70 117 70 (82) 21
6 3 30 54 78 54 174 54 (58) 25
7 3 36 2.3K 1962 2.3K 5118 2.3K (32K) 176
8 3 36 292 T 2.3K 9203 2.3K (23K) 164
9 3 36 569 T 2K 5656 2K (14K) 130

Cplex Scip Ubound
Ins Order #Vars Count Time Count Time Count Time

10 4 34 2 5707 2 1087 2 198
11 4 34 0 396 0 1088 0 189
12 4 34 2 109 2 955 2 190
13 4 36 6 1227 6 4175 6 301
14 4 36 2 753 2 2400 2 266
15 4 36 6 366 6 2470 6 278
16 4 38 12 4422 11 T 12 412
17 4 38 9 T 29 T 36 405
18 4 38 44 3391 43 T 44 401

Table 5. Numerical Results for the MSP Problem. We present the upper bound onthe number
of solutions found and the CPU-time taken in seconds for the binary constraint model and the
maximal clique model. ’T’ means that the time limit has been reached. The numbers in bold
show exact counts. The numbers in parenthesis are our upper bounds before we generate and
check solutions for feasibility.

Again, we compared our results also with the XOR approach from [8]. After the
vanilla implementation from [8] did not provide competitive results, we devised an
efficient code that can solve pure MSPs efficiently and added XOR constraints to it.
Again, we found that the problems augmented by XORs are much harder to solve which
resulted in the approach timing out on our entire benchmark.We attribute this behavior
to our inability to integrate the XOR constraints tightly with the subset-sum constraints
in the problem.

4 Conclusions

We presented a new method for computing upper bounds on the number of solutions of
BIPs. We demonstrated its efficiency on automatic recordingand market split problems.
We showed that standard methods for tightening the LP relaxation by means of cutting
planes can be exploited also to provide better bounds on the number of solutions. More-
over, we showed that a recent new method for integrating graph-based constraints more
tightly via so-called compatibility labels can be exploited effectively to count solutions
for market split problems.

We do not see this method so much as a competitor to the existing solution counting
methods that are parts of IBM Cplex and Scip. Instead, we believe that these solvers
could benefit greatly from providing upper bounds on the number of solutions. This
obviously makes sense when the number of solutions is very large and solution enu-
meration must fail. However, as we saw on the market split problem, considering upper
bounds can also boost the performance dramatically on problems that have few num-
bers of solutions. In this case, our method can be used to givea super-set of potential
solutions whose feasibility can be checked very quickly.

References

1. T. Achterberg. SCIP - A Framework to Integrate Constraint and Mixed Integer Programming.
http://www.zib.de/Publications/abstracts/ZR-04-19/

2. R.K. Ahuja, T.L. Magnati, J.B. Orlin. Network Flows.Prentice Hall, 1993.

3. E. Birnbaum and E.L. Lozinskii. The Good Old Davis-Putnam Procedure Helps Counting
Models.Journal Of Artificial Intelligence Research, 10:457-477, 1999.

4. G. Cornuejols and M. Dawande. A class of hard small 0-1 programs. Proc. of the 6th Int.
IPCO Conference on Integer Programming and Combinatorial Optimization, 284-293, 1998.

5. E. Danna, M. Fenelon, Z. Gu and R. Wunderling. Generating Multiple Solutions for Mixed
Integer Programming ProblemsInteger Programming and Combinatorial Optimization
(IPCO 2007), Vol. 4513, 2007.

6. Object Bundle Optimization Package maintained by A. Frangioni.
www.di.unipi.it/optimize/Software/Bundle.html

7. M.C. Golumbic. Algorithmic Graph Theory and Perfect Graphs.Academic Press, New York,
1991.

8. C.P. Gomes, W. Hoeve, A. Sabharwal, B. Selman. Counting CSP Solutions Using General-
ized XOR Constraints.22nd Conference on Artificial Intelligence (AAAI), 204-209, 2007.

9. T. Hadzic, E. O’Mahony, B. O’Sullivan, M. Sellmann. Enhanced Inference for the Market
Split Problem. 21st IEEE International Conference on Tools with Artificial Intelligence
(ICTAI), 716-723, 2009.

10. IBM. IBM CPLEXReference manual and user manual. V12.1, IBM 2009.
11. L. Kroc, A. Sabharwal and B. Selman. Leveraging Belief Propagation, Backtrack Search,

and Statistics for Model Counting.Integration of AI and OR Techniques in Constraint Pro-
gramming for Combinatorial Optimization Problems (CPAIOR), 278-282, 2008.

12. M. Sellmann. Approximated Consistency for Knapsack Constraints.Proc. of the 9th Int.
Conference on the Principles and Practice of Constraint Programming (CP), 679-693, 2003.

13. M. Sellmann. Cost-Based Filtering for Shorter Path Constraints.Proc. of the 9th Int. Con-
ference on the Principles and Practice of Constraint Programming (CP), 694-708, 2003.

14. M. Sellmann. Theoretical Foundations of CP-based Lagrangian Relaxation.Proc. of the 10th
Int. Conference on the Principles and Practice of Constraint Programming (CP), 634-647,
2004.

15. M. Sellmann, T. Fahle. Constraint Programming Based LagrangianRelaxation for the Au-
tomatic Recording Problem.Annals of Operations Research (AOR), 17-33, 2003.

16. M. Sellmann. Approximated Consistency for the Automatic Recording Constraint.Proc. of
the 11th Int. Conference on the Principles and Practice of Constraint Programming (CP),
822-826, 2005.

17. M. Sellmann. Approximated Consistency for the Automatic Recording Constraint.Comput-
ers and Operations Research, Vol. 36(8) 2341-2347, 2009.

18. ARP:A Benchmark Set for the Automatic Recording Problemmaintained by M. Sellmann.
http://www.cs.brown.edu/people/sello/arp-benchmark.html

19. TIVOtm System.www.tivo.com
20. M. Trick. A Dynamic Programming Approach for Consistency and Propagation for Knap-

sack Constraints.3rd Int. Workshop on Integration of AI and OR Techniques in Constraint
Programming for Combinatorial Optimization Problems (CPAIOR), 113-124, 2001.

21. M. Trick. A Dynamic Programming Approach for Consistency and Propagation for Knap-
sack Constraints.Annals of Operations Research, 118, 73-84, 2003.

22. H.P. Williams. Model Building in Mathematical Programming.Wiley: Chicester, 1978.
23. A. Zanarini and G. Pesant. Solution counting algorithms for constraint-centered search

heuristics.Proc. of the 13th Int. Conference on Principles and Practice of Constraint Pro-
gramming (CP), Vol. 4714, 743–757, 2007.

24. A. Zanarini and G. Pesant. Solution counting algorithms for constraint-centered search
heuristics.Constraints, Vol. 14(3), pp. 392-413.

